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Abstract
In an experiment on quantum mirages, confinement of surface states in an
elliptical corral has been used to project the Kondo effect from one focus
where a magnetic impurity was placed to the other, empty, focus. The
signature of the Kondo effect is seen as a Fano antiresonance in scanning
tunnelling spectroscopy. This experiment combines the many-body physics
of the Kondo effect with the subtle effects of confinement. In this work we
review the essential physics of the quantum mirage experiment, and present
new calculations involving other geometries and more than one impurity in the
corral, which should be relevant for other experiments that are being made,
and to discern the relative importance of the hybridization of the impurity with
surface (Vs) and bulk (Vb) states. The intensity of the mirage imposes a lower
bound on Vs/Vb which we estimate. Our emphasis is on the main physical
ingredients of the phenomenon and the many-body aspects, like the dependence
of the observed differential conductance on the geometry, which cannot be
calculated with alternative one-body theories. The system is described with an
Anderson impurity model solved using complementary approaches: theory of
perturbation in the Coulomb repulsion U , slave bosons in the mean field and
exact diagonalization plus embedding.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of many-body phenomena in nanoscale systems has been attracting a lot of attention
in recent years. Progress in nanotechnology made it possible to construct nanodevices such
as quantum dots (QDs) which act as ideal one-impurity systems in which the Kondo physics
is clearly displayed [1–4]. The spectral density of localized electrons of a magnetic impurity
in a metallic host, described by the impurity Anderson model [5], is known to display a
resonance near the Fermi energy in the localized (or Kondo) regime [6]. The conductance
through a QD is proportional to this density and calculations of the latter using the Wilson
renormalization group lead to a good agreement with experiment [7, 8]. In contrast to the
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density of localized electrons, the density of conduction electrons coupled to the former shows
a dip or Fano antiresonance [9] (see section 3). Exploiting the fact that the tip of the scanning
tunnelling microscope (STM) captures essentially conduction electrons, Fano line shapes have
been observed using scanning tunnelling spectroscopy (STS) for different cases of magnetic
impurities on metal surfaces [10–19]. They should also manifest in the conductance through
quantum wires side-coupled to QDs [20–25]. The impurity Anderson model also describes the
physics of the conductance through arrays of QDs weakly coupled to conducting leads [26].

A quantum corral is an area of about 40 nm2 delimited by a closed line of typically
several tens of atoms or molecules placed next to each other one at a time on an atomically flat
metallic surface using a STM. The same microscope can be used to perform STS to study with
millielectronvolt resolution the electronic density inside these corrals [12, 27–29]. Particularly
interesting are the (111) surfaces of Cu, Au and Ag. These metals have nearly spherical Fermi
surfaces with eight necks at the [111] and equivalent directions in which a gap opens. This
allows the presence of Shockley states localized at the (111) surface uncoupled to the bulk
states for small wavevector parallel to the surface and with nearly free electron dispersion [30].
STS experiments performed on these surfaces reveal fascinating standing-wave patterns and
one can see the density coming from the wavefunctions obtained solving the Schrödinger
equation for a two-dimensional free electron gas inside a hard-wall corral [12, 13, 28, 29, 31].
Experiments in which different atoms or molecules were used to build the corral (Co, Fe, S,
CO) suggest that the details of the boundaries are not important for the physics. A continuous
description of the boundary is justified by the fact that the Fermi wavelength 2π/kF ∼ 3 nm
is larger than the distance between adatoms. However, as discussed in section 6, the corrals
are leaky and the hard-wall assumption should be abandoned for a quantitative description.

The experiment on the quantum mirage is a beautiful combination of the physics of the
quantum corral and the many-body Kondo effect. One Co atom acting as a magnetic impurity
is placed at the focus of an elliptical corral built on the Cu(111) surface, and a Fano dip is
observed not only at the position of the impurity, but remarkably also at the empty focus with
reduced magnitude [12]. Variants of this experiment involving other corral shapes and more
than one impurity were presented at a conference [13]. In the original experiment, the space
dependence of�d I/dV , the differential conductance after subtracting the corresponding result
without impurity, clearly resembles the density of the state number 42 in increasing order of
energy of free electrons in a hard-wall elliptical corral. This suggests that the main features of
this space dependence can be explained by a one-body calculation. In fact, important features,
like the possibility of obtaining mirages out of the foci, can be understood from a simple tight
binding calculation [32] or from Green functions using hard-wall eigenstates [33]. Interesting
effects like anti-mirages were predicted for a non-magnetic impurity inside a hard-wall elliptical
corral [34], and quantum mirages in s-wave superconductors were calculated [35]. Also
phenomenological scattering theories, in which the energy dependence of the Kondo resonance
(directly related to the voltage dependence of dI/dV) as well as an inelastic part of the scattering
are taken from experiment,are able to describe quantitatively the space dependence [31, 36, 37].
However, the calculation of the line shape of d I/dV , its dependence on the particular geometry
of the corral, temperature or magnetic field, and the effects of interaction between impurities
is beyond of the scope of these one-body approaches.

The first calculation of the voltage dependence of d I/dV was done by one of us using
the theory of perturbation in the Coulomb repulsion of the Anderson model U [38, 39].
A many-body calculation of the mirage effect is a challenge due to the particular nature of the
conduction states brought about by the confinement in the corral. In particular, available exact
results for thermodynamic properties of the Kondo and Anderson impurities, obtained with
the Bethe ansatz, assume a constant density of conduction states [40–42], while the Wilson
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renormalization group [43] (which allows accurate calculation of dynamical properties and
was used in the context of nanoscopic systems and STS [7, 8, 44–46]) requires high symmetry
around the impurity. If only a finite number of hard-wall eigenstates with well defined energies
are mixed with the impurity (a problem that can be treated with exact diagonalization [47, 48]),
the line shape of �d I/dV becomes qualitatively wrong (see section 6). The reason is that
the separation of the relevant energy levels is large in comparison with the Kondo temperature
TK ∼ 53 K, while one knows that for a well developed Kondo resonance to exist, TK should
be larger than the average separation of the relevant levels [49]. This points to the need for
including a finite width of the corral eigenstates, which become resonances [38]. This need
persists in the presence of direct hybridization of the impurity with bulk states as shown in
section 6.1 The width of the resonances cannot be too large because otherwise the space
dependence of the state 42 of the elliptical corral, observed in dI/dV [12], would be blurred.

A subject of current interest and debate in the literature is the relative importance of the
hybridization of the impurity with bulk Vb and surface Vs states. A first-principles calculation
seems not to be possible because of the large supercells needed. They should contain more than
ten layers perpendicular to the [111] direction in order for the Shockley surface state to develop,
and more than 100 atoms per layer to reach the dilute limit of Co impurities on the surface [53].
On the basis of the rapid decay in�d I/dV as the STM tip is moved away from an impurity on a
clean (111) surface, and a jellium theory of Plihal and Gadzuk [54], Knorr et al concluded that
bulk states dominate the formation of the Kondo singlet [17, 18]. This is in agreement with tight
binding calculations [53]. However, recently Lin, Castro Neto and Jones, using a nearly free
electron approximation, including the effect of the gaps in the [111] and equivalent directions
and calculating the wavefunctions under an adequate surface potential, concluded that the
Kondo effect in the Cu(111) surface is dominated by surface states [55]. They also obtained
good agreement with experiment for the distance dependence of the amplitude of dI/dV and
its voltage dependence on top of the impurity. Using a similar approach, but without attempting
to solve the many-body problem, Merino and Gunnarsson concluded that surface states play
an important role in the differential conductance for a system with a magnetic impurity on a
clean (111) surface [56]. Therefore, the issue of the relative importance of Vb and Vs remains
unclear. In contrast, in the absence of the impurity, the relative contribution of the surface
states to the conductance (STM tip–substrate hybridization) is known to be between 1/2 and
2/3 from experiments in which the bias voltage is swept below the bottom of the surface band
(∼0.45 eV below the Fermi energy) [17, 57, 58].

Since from the experiments we know that the presence of the corral strongly affects
electronic structure of the surface states, it is clear that the variation of the line shape of
d I/dV for different corrals or positions of the impurity inside the corral and its comparison
with theory should help to elucidate the relative role of the hybridization of the impurity with
surface and bulk states. A stronger sensitivity to the geometry implies a greater participation
of the surface states in the formation of the Kondo resonance. Also the interaction between
magnetic impurities inside a quantum corral should increase with the relative importance of
surface states [47]. Unfortunately only the voltage dependences of d I/dV for a Co atom
on a clean Cu(111) surface and on an elliptical corral built on that surface are available for
comparison [12]. Using the theory of perturbation in U , both line shapes are qualitatively
explained without bulk states [39] (see section 8). However, as we will show, this seems to
be a particular case and usually the shape and width of the Fano dip are more sensitive to the
geometry.

1 The description of the Green function of the surface conduction eigenstates as a sum of resonances can be
demonstrated to be appropriate under quite general assumptions [50] and has been worked out in detail for the
circular corral [51, 52].
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In this work we discuss the main aspects of the physics of the quantum mirage. The
emphasis is on the basic understanding of the phenomenon and its many-body aspects rather
than on quantitative fits. The latter would require more detailed knowledge of matrix elements
and their wavevector dependence, crystal fields and other details. We extend previous many-
body calculations for the space and voltage dependence of�d I/dV to new different situations.
This can serve as a basis for comparison with experiment and help to elucidate the relative
participation of surface and bulk states in the formation of the Kondo singlet for a Co atom
on a Cu(111) surface. We use three different many-body techniques: theory of perturbation
in U [59, 60], exact diagonalization plus embedding [61–63] and a slave-boson mean field
approximation (SBMFA) [64, 6, 21, 25, 26]. The former two have already been applied to
quantum mirages [38, 39, 51, 52, 47] but have the disadvantage that they do not reproduce
the correct exponential dependence of TK with the coupling constant for large U/�, where
� is the resonance level width2. Therefore, the SBMFA is more appropriate for studying the
dependence of the width of the resonance on geometry.

The paper is organized as follows. In section 2 we present the impurity Anderson model
for either the corral or open surfaces, and discuss its assumptions and limitations. Section 3
discusses the Kondo resonance and Fano antiresonance in the simplest version of the model
for later comparison. The formalism and basic equations that determine the tunnelling current
are presented in section 4, using a many-body formalism, including tunnelling of the tip of
the STM with surface, bulk and impurity states. Section 5 is rather technical and explains the
different many-body approaches. In section 6 we explain the effects of the confinement on the
surface states, and how they are transmitted to the Kondo resonance and the line shape of the
mirage effect. Section 7 is devoted to the space dependence of the differential conductance
d I/dV inside an elliptical quantum corral, the effect of the impurity on it (�d I/dV ) and
the relation of these quantities with the wavefunctions of the surface states inside the corral.
This provides insight into the effect of the width of the surface states and what controls the
intensity at the mirage point. In section 8 we present results for the dependence of �d I/dV
on the bias voltage in different situations: clean surface, elliptical corrals and a circular corral.
In section 9 we estimate a lower bound for the participation of surface states in the Kondo
resonance. In section 10 the interaction between two Anderson impurities inside an elliptical
corral is discussed. Section 11 contains a summary and a discussion.

2. The model

In this section, we explain and discuss the model used to describe the electronic structure of a
system composed of one magnetic impurity interacting with surface and bulk states. The case
of two impurities is left for section 10. The surface states can correspond to eigenstates of a
clean perfect surface, or to a surface with a soft-wall corral. In both cases, the energy spectrum
of the surface states is continuous. The wavefunctions ϕ j(r) of the surface eigenstates are
normalized in a large area [51, 55]. Of course, all physical results are independent of this area.

We take only one localized d orbital for the impurity. Technically this makes some
many-body techniques easier (except the SBMFA). Previously Újsághy et al [65] assumed a
fully degenerate ground state while other recent calculations for impurities on (111) surfaces
considered the d3z2−r2 orbital more important [55, 56, 66]. Tight binding calculations suggest
that Cu(111) surface states hybridize more strongly with the Co 3d3z2−r2 orbital, while bulk
states prefer 3dxz and 3dyz orbitals [53]. Recent accurate calculations using the Wilson

2 In the ordinary Anderson model, for small enough hybridization V one has TK ∼ � exp[−1/(ρ JK )], where
� = πρV 2, ρ is the density of states per spin at the Fermi level and JK = V 2[1/(εF − Ed ) + 1/(U + Ed − εF )] is
the Kondo coupling [40–42].
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renormalization group indicate that for the expected filling of near one d hole per Co impurity,
the Kondo resonance becomes strongly asymmetric in the orbitally degenerate case [46].
Then, one would expect in this case also a strongly asymmetric �d I/dV in contrast to the
experimental observations for the (111) surface [12, 17]. We neglect the s, p orbitals of the
impurity.

The Hamiltonian can be written as

H =
∑

jσ

εs
j s

†
jσ s jσ +

∑

jσ

εb
j b

†
jσb jσ + Ed

∑

σ

d†
σdσ + Ud†

↑d↑d†
↓d↓

+
∑

jσ

(V j
s d†

σ s jσ + H.c.) +
∑

jσ

(V j
b d†

σb jσ + H.c.) (1)

where s†
jσ (b

†
jσ ) are creation operators for an electron in the j th surface (bulk) conduction

eigenstate in the absence of the impurity, but including the corral if present. The impurity is
placed at the two-dimensional position Ri on the surface, and we assume that the hybridization
of the impurity d orbital with the surface state j is proportional to its normalized wavefunction
at that point ϕ j (Ri) [33, 38]. Similarly, for the bulk states, the hybridization is proportional
to some average ψ j (Ri) of the bulk wavefunction in the direction normal to the surface, that
depends on Ri :

V j
s = Vsλϕ j (Ri ), V j

b = Vbψ j (Ri), (2)

where Vs , Vb are energies representing local hybridizations in a tight binding model [32, 39]
(see the next section) and λ = 2.38 Å is the square root of the surface per Cu atom of
a Cu(111) surface. We assume also a constant density of bulk states. However, we must
warn that recent calculations obtain a significant dependence of the matrix elements with
wavevector [55, 56, 66]. This dependence affects the line shape of dI/dV . Nevertheless,
one expects the trends in the modifications of the voltage dependence of dI/dV due to the
modifications of the geometry to remain the same, at least on a qualitative level. This is
also suggested by the weak dependence of the results on the cut-off for the surface states Ec,
which should be introduced in any theory of quantum corrals to avoid divergences in the Green
functions for the surface states. This can be thought of as an energy dependent hybridization
Vs which is constant below Ec and goes to zero abruptly at Ec. A linearly decreasing Vs has
also been used [38]. Increasing Ec leads to a weak increase in the width of the resonances and
to a more asymmetric line shape, but the main conclusions regarding the mirage effect are not
altered.

The many-body part of the Hamiltonian which renders it non-trivial in all cases is the
on-site Coulomb repulsion at the impurity site U . Another difficulty is the calculation of
the surface wavefunctions ϕ j(r) for soft walls. They have been calculated exactly for a soft
circular corral [51, 52] and can be reasonably well approximated for an elliptical corral [51].
We return to this point in section 6. For open structures, the surface Green function can be
calculated using scattering theory [31]. However, this renders the many-body problem too
difficult.

3. Simple picture of the Kondo resonance and Fano antiresonance

Before discussing the many-body techniques and the effect of the corral, we want to illustrate
some basic features of the Kondo physics, using the simplest case of the Anderson model in
which the impurity is hybridized with only one band (either surface or bulk) with constant
density of states ρ0 and wavevector independent hybridization. The Hamiltonian is given
by equation (1) eliminating the terms with s jσ , considering that the b†

jσ create Bloch waves,



S1100 A A Aligia and A M Lobos

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

 (ω − ε
F
)/∆

-6 -4 -2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
(a) (b)

ρ c σ
 / 

ρ 0

E
d
 + UE

d

 

 T=0
 T=∆ /2

 T=2∆

∆ 
ρ d σ

(ω − ε
F
)/∆

Figure 1. (a) Spectral density of an impurity hybridized with a featureless conduction band and
(b) spectral density at the conduction site hybridized with the impurity, as a function of energy at
different temperatures. Parameters are Ed − εF = −3� and U = 8�.

(b†
kσ = (1/

√
N )

∑
l exp(−ik · Rl)b

†
lσ , where b†

lσ creates an electron at site l with position Rl)
and taking V j

b = V/
√

N where N is the number of sites. Then, the impurity is hybridized
with the band at one site that we call i .

The impurity spectral density ρdσ (ω) of this model has been calculated accurately using
Wilson renormalization group [67] and agrees qualitatively with those from the theory of
perturbation in U [60]. The results presented in figure 1(a) were obtained using a self-consistent
approach [68] based on an interpolation for the self-energy of the Green function between the
expression up to second-order theory of perturbation in the Coulomb repulsion U [59, 60] and
the exact result for U → ∞. The resonant level width is � = πρ0V 2. This approximation
works well for U � 8� [23].

As seen in figure 1(a), ρdσ (ω) shows characteristic charge fluctuation peaks (or shoulders
for small U ) at Ed and Ed + U and another peak near the Fermi energy εF characteristic
of the Kondo regime. This peak is the so-called Kondo resonance. Its half-width at half-
maximum corresponds to the Kondo temperature TK . At temperatures above TK the Kondo
effect disappears and the spectral weight of the Kondo peak is transferred to the other two.

The STS is much more sensitive to the conduction electrons than to the localized ones
because the former are more extended in space and reach the tip of the STM with a larger
amplitude. The site most affected by the impurity is the one which hybridizes with it (i ).
Using equations of motion (in the same way as is done in the next section), it is easy to show
that the Green function at this site is (the spin index is dropped for simplicity)

Gii (ω) = G0
ii (ω) +

[
V G0

i i (ω)
]2

Gd(ω), (3)

where G0
ii(ω) is the corresponding Green function in the absence of the impurity and Gd(ω)

is the Green function of the impurity. This equation is exact and does not depend on the
approximations for Gdd(ω). If the unperturbed conduction band extends from −W to W then

G0
ii (ω) =

∑

k

1

ω + iη − εk
= ρ0

[
ln

∣∣∣∣
W + ω

W − ω

∣∣∣∣ − iπ�(W − |ω|)
]
. (4)

If (as usual) W � TK and we are interested in energies |ω− εF | ∼ TK , we can neglect the first
term inside the brackets and approximate G0

ii (ω)
∼= −iπρ0. Replacing this in equation (3) and

using ρiσ (ω) = − Im[Gii (ω)]/π one obtains the very simple result

ρiσ (ω)

ρ0
= 1 − πρdσ (ω)�. (5)
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Thus a peak in ρdσ (ω) implies a dip in the conduction density of states, more pronounced near
the impurity (see figure 1(b)). In more complex situations, in particular when confinement due
to the corral is important, the real part of G0

ii (ω) cannot be neglected and the dip in ρiσ (ω) is
not directly related to the Kondo peak in ρdσ (ω). In extreme cases, either the dip is replaced
by a peak [55] or the structure near εF disappears, as we will show in section 6.

In any case, the above simple picture corresponds to a first rough approximation of the
experimental observations of the voltage dependence of dI/dV for impurities on the (111)
surfaces of Cu and noble metals, and we will use it for later comparison.

4. The tunnelling conductance

In this section we write the basic equations which relate d I/dV to the Green function at the
impurity site. We include the hopping of the tip of the STM with the impurity, surface and bulk
states in a many-body formalism. The tunnelling geometry and energy diagram are shown for
example in figure 1 of [31], but the impurity should be included if the tunnelling current is
measured near it [69], and also the bulk states according to experiment [17, 57, 58].

The total system S consists of a subsystem SH described by the Hamiltonian H
(equation (1)) and St contains the tip, which we assume can be described as a non-interacting
system with one-particle energies εk and the Fermi energy set at zero. SH has all one-particle
energies, including the Fermi level, displaced by eV to lower energies by a bias voltage V ,
where e is the elementary charge. For simplicity we treat the case of positive V in which
electrons are transferred from the tip to SH . Extension to negative V is trivial using an
electron–hole transformation. We assume a local hopping of the tip with the different states

Hmix = A
∑

kσ

(t†
kσ hσ + H.c.), (6)

hσ = λ
∑

j

ϕ j(Rt )s jσ + p
∑

j

ψ j (Rt)b jσ + q(|Rt − Ri |)dσ . (7)

Here t†
kσ creates an electron in the tip eigenstate k with spin σ , Rt describes the coordinates of

the tip on the plane, and A, p and q are parameters that describe the hopping of the tip with
the different states of SH . The function q(|Rt − Ri |) is small and decays strongly with the
distance between the tip and the impurity |Rt − Ri | due to the strongly localized nature of the
impurity wavefunction. However, when Rt − Ri = 0, a small q introduces an important source
of asymmetry in the line shape of d I/dV in addition to that corresponding to the structure of
the Green functions (see section 8).

Treating Hmix in lowest order in perturbation theory and at T = 0, using Fermi’s golden
rule, the current due to the transfer of electrons from St to SH becomes

I = 2πe

h̄
A2

∑

ν

∣∣∣∣〈ν|
∑

kσ

h†
σ tkσ |g〉

∣∣∣∣
2

δ(Eν − Eg − eV ), (8)

where |ν〉, Eν are the eigenstates and energies of S and |g〉 is the ground state assumed non-
degenerate. Using the same notation with a subscript H for SH , we have |g〉 = ∏

kσ t†
kσ |gH 〉

with the product restricted to k such that εk < εF = 0. Replacing the above and doing the
calculations within St one has

I = 2πe

h̄
A2

∑

νH

∑

kσ

′|〈νH |h†
σ |gH 〉|2δ(EνH − εk − EgH − eV ). (9)

Using the Lehman representation [70], the sum over νH is seen to represent the part of the
spectral density ρhσ (εk +eV ) of h†

σ for electron addition. This corresponds to excitations above
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εF with positive argument of ρhσ [71]. By symmetry, it is independent of σ . Transforming
the sum over the tip states k as an integral assuming a constant density of states ρt one gets

I

(
4πe

h̄
A2ρt

)−1

=
∫ 0

−eV
ρhσ (ε + eV ) dε =

∫ eV

0
ρhσ (ω) dω. (10)

From here, it is clear that the differential conductance is proportional to the spectral density of
the state hσ (Rt ):

d I/dV ∼ ρhσ (eV ) = − 1

π
Im Ghσ (eV ), (11)

where Ghσ (ω) = 〈〈hσ ; h†
σ 〉〉ω is the Green function of hσ (Rt ). Therefore, in the rest of the

paper we will be mainly concerned with the space and energy dependence of ρhσ . This spectral
density can be related to the Green function for the d electrons Gdσ (ω) = 〈〈dσ ; d†

σ 〉〉ω, and the
unperturbed Green functions for conduction electrons using equations of motion. Writing c jσ

to represent either s jσ or b jσ , the relevant equations can be written in the form

(ω − εc′
j )〈〈c′

jσ ; c†
j ′σ 〉〉ω = δ j j ′δcc′ + V̄ j

c′ 〈〈dσ ; c†
j ′σ 〉〉ω,

(ω − εc
j )〈〈c jσ ; d†

σ 〉〉ω = V̄ j
c 〈〈dσ ; d†

σ 〉〉ω,
(ω − εc

j )〈〈dσ ; c†
jσ 〉〉ω = V j

c 〈〈dσ ; d†
σ 〉〉ω.

(12)

Dropping the spin indices, using these equations and introducing the non-interacting Green
functions (in absence of the impurity) for conduction electrons

G0
s (R1, R2, ω) =

〈〈
∑

j

ϕ j(R1)s jσ ; ϕ j ′(R2)s
†
j ′σ

〉〉

ω

=
∑

j

ϕ j(R1)ϕ j (R2)

ω − εs
j

,

G0
b(R1, R2, ω) =

∑

j

ψ j (R1)ψ j(R2)

ω − εb
j

,

(13)

the Green function for the h operators becomes

Gh(Rt , Ri , ω) = λ2G0
s (Rt , Rt , ω) + p2G0

b(Rt , Rt , ω) +�Gh(Rt , Ri , ω),

�Gh(Rt , Ri , ω) = F(Rt , Ri , ω)F(Ri , Rt , ω)Gd(ω),

F(R1, R2, ω) = Vsλ
2G0

s (R1, R2, ω) + pVbG0
b(R1, R2, ω) + q(|R1 − R2|).

(14)

Here, the first two terms when replaced in equation (11) describe dI/dV in the absence of
the impurity, while �Gh describes the effect of the impurity on the differential conductance
�d I/dV .

Note that the space dependence of d I/dV is determined only by the non-interacting
conduction electron Green functions. In particular at a distance of the impurity larger than
∼0.5 nm, q(|Rt − Ri |) becomes irrelevant, the bulk part becomes less important in �d I/dV
due to its more rapid decay with the distance between the tip and the impurity |Rt − Ri |,3 and
the space dependence is dominated by G0

s (Rt , Ri , ω). The impurity Green function Gd can
only alter the relative weight of the real and imaginary parts of the other factors in�Gh . There
is a natural length scale in the Kondo problem ξ = h̄vF/TK , where vF is the Fermi velocity. It
has been interpreted as the size of the cloud of conduction electrons that screen the localized
spin in the Kondo effect. The existence of this cloud is still controversial [72–74]. Theoretical
work has shown that the persistent current as a function of flux j (�) in mesoscopic rings with

3 The bulk Green function G0
b(R1, R2, ω) contributes a uniform background to dI/dV (equation (11)) through the

second term of the first equation (14). In addition, it has a contribution to�dI/dV through the second equation (14)
which is important only when tip and impurity are close to each other because G0

b ∼ 1/|R1 − R2|2 at distances larger
than a few nanometres [54, 56].
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quantum dots changes its shape smoothly as the length of the ring L goes through ξ and that
j L is a universal function of L/ξ [75, 76]. However, in our case, it is clear that ξ plays no role
in the space dependence of d I/dV .

5. The many-body techniques

The core of the many-body problem is solving the impurity Green function Gdσ which enters
equation (14) and determines d I/dV through equation (11). Here we present results using
three different techniques: (a) perturbation theory up to second order in U , (b) the slave-boson
mean field approximation (SBMFA) and (c) exact diagonalization plus embedding (EDE). The
first one has been already used by us to study the mirage effect [38, 39, 51, 52] and by one of
us [39] and Shimada et al [77] to study the line shape of d I/dV in the absence of the corral.
The latter problem was also studied recently using the SBMFA [55], and to the best of our
knowledge the results presented in section 8 are the first application of this technique to the
mirage effect. EDE has been used in [47].

5.1. Perturbation theory in the Coulomb repulsion

The starting point is the calculation of the non-interacting problem (U = 0) but with Ed

replaced by the effective one-particle d level Eeff
dσ0. Using equations of motion similar to

equations (12), and assuming V 2
b G0

b(Ri , Ri , ω) = −iδb independent of ω (as in the simple
case of section 3), the resulting non-interacting impurity Green function becomes

G0
dσ (ω) = 1

ω − Eeff
dσ + iδb − (Vsλ)2G0

s (Ri , Ri , ω)
. (15)

The first choice for Eeff
dσ would be the Hartree–Fock value Eeff

dσ = Ed +U〈d†
σ̄dσ̄ 〉 [60]. However,

out of the symmetric case Ed + U/2 = εF , better results are obtained if Eeff
dσ and 〈d†

σdσ 〉 are
calculated self-consistently using interpolative schemes that reproduce correctly the physics
not only for small U but also for infinite U [23, 68, 76, 78]. For example, the persistent current
in small rings with quantum dots practically coincides with exact results for U ∼ 6�, where
� is the resonant level width [76]. In the symmetric case the theory is quantitatively correct up
to U ∼ 8� [79]. To avoid self-consistency we take parameters near the symmetric case, for
which Eeff

dσ is near the Fermi energy εF . This is consistent with first-principles calculations [80].
The interacting impurity Green function can be written in the form

G−1
dσ (ω) = [

G0
dσ (ω)

]−1
+ Eeff

dσ − Eeff
dσ0 −�σ (ω), (16)

and the approximation consists in calculating�σ (ω) in second-order theory of perturbation in
U [59, 60] (the first-order terms are already included in Eeff

dσ0). The corresponding Feynman
diagram is shown in figure 2. Using the analytical extension of the time ordered G0

dσ (ω) to
Matsubara frequencies, the expression for the self-energy reads

�σ (iωn, T ) = U 2T
∑

m

G0
dσ (iωn − iνm)χ(iνm);

χ(iνm) = −T
∑

l

G0
dσ̄ (iωl)G

0
dσ̄ (iωl + iνm),

(17)

where the ωi (νm) are fermionic (bosonic) frequencies. The evaluation of the Matsubara
sums is greatly facilitated by the fact that the unperturbed Green function for surface states
G0

s (R1, R2, ω), which for a soft corral involve a continuous distribution of energy, can be
well approximated by a sum over a finite number of simple fractions with simple poles in the
complex plane (see equation (32) of section 6) [51].
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Figure 2. Feynman diagram for the contribution to the self-
energy of the d electrons in second order in the Coulomb
repulsion U .
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Figure 3. (a) Self-energy and (b) impurity spectral density as a function of energy for a system
with an impurity placed at position (−0.4a, 0) inside an elliptical quantum corral with eccentricity
1/2 and size such that the state 35 is at the Fermi level. Parameters are in the text (section 5.1).

In figure 3(a) we show the resulting �σ (ω) at zero temperature for an elliptical corral
with eccentricity e = 1/2, like that used in the experiment of Manoharan et al [12], but with
semimajor axis reduced to a = 6.46 nm so that the state 35 of the hard-wall corral falls at
the Fermi level. The impurity was placed at a maximum of the wavefunction of this state
(x = ±0.4a, y = 0; see figure 10). For simplicity we took Vb = 0, and G0

s (R1, R2, ω)

was constructed from hard-wall eigenstates broadened by an imaginary part δ = 20 meV
(equation (32)). For the hybridization with surface states we took an energy dependent
decreasing function Vs(ε) = 0.67 eV max(1 + εF −ε

eV , 0) [38], which leads to a more symmetric
impurity density of states ρdσ (ω). The zero of energy is set at εF = 0, and Eeff

dσ = 22 meV.
We took U = 1 eV. While U = 2.84 eV has been estimated [65], this approximation ceases
to be reliable for larger values of U .4 The imaginary part of �σ (ω) vanishes at εF and has a
quadratic dependence on energy near εF , respecting Fermi liquid properties [81].

The particular structure of �σ (ω) near εF leads to the development of the Kondo peak in
the impurity spectral density ρdσ (ω) = − 1

π
Im Gdσ (ω). This function is shown in figure 3(b)

for a range of energies extending between the bottom of the surface band and the smooth cut-
off in the hybridization. The overall structure is similar to that shown in figure 1(a), with two
charge fluctuation peaks and the Kondo peak. However, the uneven structure of the conduction
band, which in this case is a sum of broadened peaks rather than a flat band, introduces some
wiggles. This is particularly clear for the charge fluctuation peak near Ed + U ∼ 0.5 eV. The
effects of the confinement will be discussed in the next section.

Unless otherwise indicated, the results presented in this paper were obtained by this
technique.

4 The decrease (increase) in U for fixed Ed leads to a smaller (larger) Vs and Vb to keep the experimentally observed
width of the Fano antiresonance, but has no other important consequences.
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5.2. The slave-boson mean field approximation (SBMFA)

This approximation for the U → ∞ limit of the Anderson model is in some sense a complement
of the previous one, which is valid for small or moderate U (see footnote 4). The slave-boson
representation consists in writing d†

σ = f †
σ b as a product of a fermion operator f †

σ and a
bosonic one b [64]. For U → ∞, double occupancy is forbidden and this is expressed by
the constraint b†b +

∑
σ f †

σ fσ = 1 introduced by a Lagrange multiplier� in the Hamiltonian
H [64, 82]. We present the formalism for the SU(N) generalization of our model, in which
the index σ can run over a set of N degenerate states (instead of only 2). In the mean field, the
bosonic operators are replaced by a number b → 〈b〉 = 〈b†〉 = r , and r and � are obtained
minimizing the free energy of the resulting model for free fermions. In this approximation,
the charge fluctuation peaks (at Ed and Ed + U ) are absent in the spectral density. However,
in the Kondo regime, for zero or small temperature and energies near the Fermi energy, the
approximation seems to be reliable [6]. We restrict our calculations to T = 0.

In the SBMFA, the impurity Green function near the Fermi energy εF = 0 is just

Gdσ (ω) = r2G f σ (ω), (18)

and the Green function G f σ (ω) = 〈〈 fσ ; f †
σ 〉〉ω is obtained by solving the following effective

Hamiltonian, which results from equation (1) with the above-explained replacements:

Heff =
∑

jσ

εs
j s

†
jσ s jσ +

∑

jσ

εb
j b

†
jσb jσ + (Ed +�)

∑

σ

f †
σ fσ +�(r2 − 1)

+ r

[
∑

jσ

(V j
s f †

σ s jσ + H.c.) +
∑

jσ

(V j
b f †

σ b jσ + H.c.)

]
. (19)

Minimization of the energy 〈Heff〉 with respect to � leads to

r2 = 1 −
∑

σ

nσ = 1 − Nnσ , (20)

where in the second equality we assume SU(N) invariance and

nσ = 〈 f †
σ fσ 〉 = − 1

π

∫
dω f (ω) Im G f σ (ω), (21)

where f (ω) is the Fermi function.
Using the Hellmann–Feynman theorem [83], the other equation to be solved self-

consistently reads

1

2r

∂〈Heff〉
∂r

= � + S + B = 0, (22)

S = 1

2r

∑

jσ

〈V j
s f †

σ s jσ + H.c.〉, B = 1

2r

∑

jσ

〈V j
b f †

σ b jσ + H.c.〉. (23)

The expectation values entering this equation can be evaluated as integrals over f (ω) times
the imaginary part of Green functions of the same form of the first member of the second
and third of the equations (12) [84]. From the differences between H (equation (1)) and Heff

(equation (19)) one sees that these equations can be used with dσ replaced by fσ and a factor
r multiplying V j

s and V j
b . Then

S = − 1

π
Im

[∫
dω f (ω)

∑

jσ

|V j
s |2

ω + iη − εs
j

G f σ (ω)

]

= − N

π
V 2

s λ
2 Im

[∫
dω f (ω)G0

s (Ri , Ri , ω)G f σ (ω)

]
, (24)
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Figure 4. Comparison between the analytical expression used in [17] to fit the low energy part of
dI/dV and our results within the SBMFA. The parameters are explained in section 5.2.

where for the last equality we used equations (2) and (13). In a similar way one has

B = − N

π
V 2

b Im

[∫
dω f (ω)G0

b(Ri , Ri , ω)G f σ (ω)

]
, (25)

while the f electron Green function is

G f σ (ω) = 1

ω − Ed −�− (r Vsλ)2G0
s (Ri , Ri , ω)− (r Vb)2G0

b(Ri , Ri , ω)
. (26)

From the self-consistent solution of equations (20)–(26) we obtain G f σ (ω) and r . The
differential conductance is then obtained using equations (11), (14) and (18). For the
calculations shown here, we take N = 2 because otherwise the line shape becomes too
asymmetric in comparison with experiments for the expected 3d9 configuration of the Co
impurity [46].

In the absence of the corral, for an impurity on a clean surface, we assume constant
symmetric density of states as in equation (4):

λ2G0
s (Ri , Ri , ω) = ρs

[
ln

(
Ws + ω

ω − Ws

)]
, G0

b(Ri , Ri , ω) = ρb

[
ln

(
Wb + ω

ω − Wb

)]
. (27)

The self-consistent equations are rather easy to solve for this case and this allows us modify
the parameters to fit the observed line shape. In figure 4 we compare the analytical expression
used by Knorr et al [17] to fit the low energy part of d I/dV and our results within the SBMFA.
The same set of parameters is used in section 8 to study the modifications of the line shape
in a circular corral. For the bulk density of states we take ρb = 0.145/eV/site and spin
from its value at the Fermi energy reported from first-principles calculations [85]. Wb is
determined from the filling of one electron per site 2Wbρb = 1. From the effective mass
m∗

e = 0.38 me, where me is the electron mass [28, 86] and a parabolic dispersion, one gets
ρs = 0.045 eV−1/site and spin. From the bottom of the surface band we take Ws = 0.4 eV,
and we assume for simplicity the same value for the high energy cut-off. As mentioned before,
the results are only weakly sensitive to the cut-off. Ed = −0.8 eV is taken from [65]. The ratio
Vb/Vs is determined by imposing a fixed ratio of the resonant level due to bulk (δb = πρbV 2

b )
or surface (δs = πρs V 2

s ) states: (a) δb = δs , (b) δb = 3δs . The magnitude of the hybridization
controls the width of the line shape and is a fitting parameter. The value of p in equation (7) is
fixed in such a way that for a clean surface, nearly half of the intensity of d I/dV is due to bulk
states [17, 57, 58]. Therefore we took p = 1/3 to compensate the approximate ratioρb/ρs � 3.
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Instead q is used as a fitting parameter which controls the asymmetry in d I/dV . In addition,
for the fit of figure 4, we shifted the minimum of d I/dV and used a factor that represents
the quantity 4πe

h̄ A2ρt in equation (10). From the fitting procedure we obtain (a) q = 0.04,
Vs = 0.895 eV and Vb = 0.499 eV, (b) q = 0.035, Vs = 0.604 eV and Vb = 0.583 eV.

5.3. Exact diagonalization plus embedding (EDE)

This method developed for impurity problems [61, 62], consists in solving numerically by the
Lanczos method part of the system H0 which contains a finite number of relevant many-body
states, and treating a one-body term H ′ which connects it to the rest of the non-interacting
system Hr , by an approximate method. For example, H = H0 + H ′ + Hr can describe a
quantum wire with an embedded quantum dot modelled by the impurity Anderson model in
a chain [22, 24, 63]. In this case H0 contains the dot and a few adjacent sites, and H ′ is the
hopping of the extreme sites included in H0 to their nearest neighbours in Hr . For an impurity
in a quantum corral, H0 should contain the impurity and a few conduction eigenstates of the
hard-wall corral, which acquire a finite width δ due to hopping to the rest of the system [47].
As we show in the next section, this width is essential for describing the physics.

The method starts by solving the one-particle Green functions for H ′ = 0. Those for
Hr are known, and those of H0 are calculated using the recursion technique combined with
the Lanczos method. Off-diagonal matrix elements are calculated from diagonal elements of
hybrid states, involving sums and differences of basis states. This information is gathered
in a matrix g. For a non-interacting system (U = 0), the Green function of H , which we
denote by G, can be calculated from the Dyson equation G = g + gH′G. This is taken as an
approximation for the interacting system. Obviously the approximation is exact for H ′ = 0
and any value of the interaction, and also in the non-interacting case.

This approximation should be used with caution and incorrect results can be obtained if it
is applied outside its range of validity. For the Anderson model, a reasonable criterion is that
the size of the exactly solved part should be smaller than or of the order of the characteristic
length ξ ∼ h̄vF/TK mentioned in section 4 [22, 24, 63]. In practice, even when ξ is ten times
larger than the size of the system, the resulting value of the impurity spectral density at the
Fermi energy ρdσ (εF ) practically coincides with the exact value, known from Friedel’s sum
rule [22, 63]. For much larger ξ , the approximation is not valid. For example, the width of
the Kondo resonance near the symmetric case Ed + U/2 ∼ εF behaves as U−2 [63], which
is incorrect for large U (implying small TK and large ξ ) (see footnote 2). In the mirage
experiment, using the velocity of bulk states vF = 1.57 × 108 cm s−1, ξ ∼ 200 nm and the
size of the ellipse is 2a ∼ 14 nm.

This technique is easier to implement than others for the case of more than one impurity
in the quantum corral and will be used in section 10.

6. The role of confinement

6.1. One-body effects

In the experiments on the mirage effect in an elliptical corral with eccentricity e = 1/2 and
semimajor axis a = 7.13 nm, the space dependence of�dI/dV reminds us of the wavefunction
of the state number 42 for a two-dimensional free electron gas in a hard-wall corral [12]. This
already indicates the importance of the confinement in the problem. Although the hard wall
is not a realistic assumption, some basic features of the mirage effect can be understood with
it [32, 33]. The eigenstates which determine the surface Green function equation (13) have
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in general a continuous distribution in energy, but the spectrum is discrete for a hard-wall
corral. From the form of the Schrödinger equation we know that for corrals of the same
size, the separation between any two energy levels is inversely proportional to the area of the
corral [51]. Therefore in principle changing the size of the corral allows one to single out one
energy level at will, place it near the Fermi energy εF , and observe it by means of STS, since
as explained in section 4, it essentially captures the conduction states near εF . While this is a
good starting point for the understanding of the phenomenon, due to the soft character of the
walls, the corral eigenstates become resonances and there is a delicate interplay between the
width of these resonances and the separation between energy levels.

While in the presence of soft walls the surface eigenstates form a continuum, it turns
out very useful not only for the understanding of the physics but also for the practical
implementation of the many-body techniques that under general assumptions, the surface
Green function can be written as a discrete sum of contributions from resonances [50]. We
have shown this explicitly for the case of a circular confining potential of the form

V (r, θ) = Vconf
h̄2

2m∗
er2

0

δ

(
r

r0
− 1

)
, (28)

where r, θ are the polar coordinates on the plane and Vconf is a dimensionless constant
controlling the strength of the confinement potential [51, 52]. The result is

G0
s (r, θ, r

′, θ ′, ω) =
∑

n,m

Cm
n Jm(km

n r)Jm(km
n r ′)eim(θ−θ ′)

ω − εm
n + iδm

n

. (29)

The complex poles εm
n − iδm

n = (h̄km
n )

2/(2m∗
e), where the complex wavevectors km

n are the
zeros of a function Fm(k) explained below which lead to positive δm

n . The coefficients Cm
n are

Cm
n = − ikm

n
∂(Fm(k))
∂k |k=km

n

. (30)

Fm(k) is a function of the Bessel functions of the first (Jm) and second (Ym) kind which is
related to the normalization of the wavefunctions in the continuum. Its expression is

Fm(k) = A2
m(k) + B2

m(k), with Am(k) = 1 +
Vconf(kr0)

−1

Ym+1(kr0)

Ym (kr0)
− Jm+1(kr0)

Jm(kr0)

,

Bm(k) = (1 − Am(k))
Jm(kr0)

Ym(kr0)
.

(31)

In practice, in equation (29) one includes only the terms for which εm
n < Ec, where the cut-off

energy Ec is of the order of 1 eV.
The results of [51] suggest that for corrals of other shapes and not too weak confinements,

one can approximate the surface Green function as

G0
s (R1, R2, ω) �

∑

j

ϕc
j(R1)ϕ

c
j (R2)

ω − ε j + iδ j
, (32)

where ϕc
j(R) are the discrete eigenstates of the hard-wall corral and ε j are their energies,

calculated with a slightly renormalized effective mass m∗
e (increased by about 10% [51]), and

δ j are the widths of the resonances, which to a very good approximation are linear in energy:
δ j = δF(ε j − εb)/(εF − εb), where δF is the width of the resonance at the Fermi level and εb

is the bottom of the surface band [51]. As we show below, this width plays an essential role
in the many-body results. In some cases, for simplicity and since it does not affect much the
results, we will take constant δ j = δF .
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Figure 5. Impurity spectral density as a function of energy for a ring of L sites described by
the impurity Anderson model and several values of L . An artificial broadening η = 0.01t was
introduced for each peak. The result for L = 800 is also shown with a dashed curve in (a) and (b)
to facilitate comparison. The parameters are in the text (section 6.2).

6.2. Many-body effects

Usually, as in the simple case of section 3, the Anderson impurity is hybridized with a
continuous band of conduction states, flat on the scale of TK . However, if one takes Vb = 0
and a hard-wall assumption for the surface states, the Anderson impurity in our model is
mixed with a discrete set of conduction states with a significant separation between adjacent
levels. Does a Kondo resonance form in this case? This question has been addressed in
the context of mesoscopic systems [49]. We illustrate it with a simple problem of a ring of
L sites described by a tight binding model with hopping t , in which one particular site has
on-site energy Ed = −t , a Coulomb repulsion U = 2t and hopping 0.4t with their nearest
neighbours [76]. We take half-filling, which implies εF = 0, and assume that the ring is
threaded by half a flux quantum in order to have (as in the case of the quantum mirage) an
important hybridization of a conduction state at the Fermi energy εF with the impurity. This
is a symmetric Anderson model with a discrete spectrum of conduction states. The impurity
spectral density ρdσ (ω) calculated with the theory of perturbation in U is shown in figure 5.
For L = 800, the average separation between the levels which hybridize with the impurity
d = 8t/L is an order of magnitude smaller than the half-width of the resonance TK ∼ 0.1t and
we can see a structure similar to that of figure 1(a). In particular, the Kondo resonance at εF

can be visualized. For L = 80 one has d ∼ TK and the spectral function has some similarities
with that of the continuous conduction band, but with an important internal structure. For
L = 8, for which d ∼ 10TK , the central Kondo peak is absent5.

As we see, to obtain a well defined Kondo resonance with discrete conduction states,
it is necessary that d � TK . Instead, in the mirage experiments one has d � TK , while
TK ∼ 5 meV [12], the average distance between the energy levels that have an important
hybridization with the impurity (those shown in figure 10) is of the order of 100 meV. This
shows the need to take into account the finite width δ j in the conduction states. The evolution
with δ j (taken for simplicity independent of j ) of ρdσ (ω) and the change in the surface part
of the conduction density of states after addition of the impurity �ρsσ (ω) for the elliptical
corral with e = 1/2 studied experimentally [12] is shown in figure 6. The impurity is placed
at one focus of the ellipse. ρsσ (ω) is given by equations (7), (11) and (14) with p = q = 0.

5 If the Fermi level falls between two energies of the conduction states, a peak is present at εF for d � TK , but in
any case, the structure of ρdσ (ω) does not show the features that correspond to the continuous conduction density of
states [49].
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Figure 6. Impurity spectral density ρdσ (ω) (top) and change in the surface spectral density due
to addition of the impurity at the impurity site �ρsσ (ω) (bottom) for the configuration of the
mirage experiment and different values of the width of the conduction levels δ: 1 meV (left),
10 meV (middle) and 50 meV (right). The dashed curve shows �ρsσ (ω) at the empty focus. The
parameters are as in figure 4 (section 5.1).

As anticipated above, for very small δ, the impurity spectral density does not show a well
defined resonance at εF . As a consequence, there is a marked disagreement of �ρsσ (ω) with
the observed�d I/dV (which is very similar to the bottom left curve). For δ = 1 meV, ρsσ (ω)

has two peaks (instead of antiresonances as in section 3) at the same positions of ρdσ (ω), while
in the absence of the impurity ρsσ (ω) has a peak which corresponds to the state 42 which lies
at εF . Therefore the depression of�ρsσ (ω) at εF is a consequence of the subtraction and does
not indicate a Fano antiresonance. These results are consistent with numerical results which
correspond to δ = 0 but include (as usual in these calculations) an artificial broadening of the
resulting peaks [48]. For a large broadening the results for�ρsσ (ω) look like those of figure 6
for δ = 10 meV but with a large positive average, what is inconsistent with experiment.

As δ increases, the two peaks in ρdσ (ω) merge into one (for δ ∼ 18 meV) and the shapes
of the Kondo resonance and the Fano antiresonance become similar to the results for the more
conventional case, described qualitatively by the simple model of section 3. The Fano dip in
�ρsσ (ω) for δ = 50 meV agrees well with experiment [12]. The rather symmetrical shape
is due to the fact that Vs decreasing with energy was assumed. For constant Vs , �ρsσ (ω)

is smaller for positive ω (see the full curve of figure 16). The evolution of ρdσ (ω) with δ,
described first in [38], has been confirmed by exact diagonalization plus embedding [47], and
by Wilson renormalization group calculations [44].

In figure 6 we also show �ρsσ (ω) at the empty focus. The comparison with the
corresponding value at the focus where the impurity is located establishes the intensity of
the mirage effect. For small δ the ‘transmission’ of the Kondo effect to the empty focus is
nearly perfect, because the space dependence follows closely the density of the state 42 which
has maxima at the foci (see figure 8). As δ increases, the intensity of the mirage decreases as
a consequence of interference effects described in the next section.
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d = 7 meV and U = 1 eV.

Figure 8. Contour plot of the wavefunctions
of an elliptical corral with semimajor axis
a = 7.13 nm and eccentricity e = 1/2
which lie close to the Fermi energy.

The introduction of moderate hybridization of the impurity with bulk states does not
affect the need to include a non-vanishing δ to be able to obtain a reasonable agreement with
experiment. In figure 7 we show again both densities for δ = 1 meV and parameters such that
the strength of the hybridization of the impurity with bulk and surface states is approximately
the same6. The peaks in ρdσ (ω) and ρsσ (ω) are broadened with respect to the previous case,
but again the dip in �ρsσ (ω) is not a Fano antiresonance, but corresponds to minus the peak
in ρsσ (ω) at εF in the absence of the impurity.

7. The space dependence of dI/dV

While scattering theories based on a phenomenological phase shift for the scattering
at the atoms of the boundary and the impurity describe the space dependence
quantitatively [31, 36, 37], approaches based on wavefunctions of a corral (with continuous
boundaries) usually provide more insight into the underlying physics [32, 33, 38]. For example

6 The parameters were modified so that the contributions of Vb and Vs to the width of the Fano antiresonance for
δ = 40 meV are the same.



S1112 A A Aligia and A M Lobos

Figure 9. Contour plot of dI/dV in the elliptical corral with a = 7.13 nm and e = 1/2 for
δ = 50 meV (left), �dI/dV for δ = 50 meV (middle) and �dI/dV for δ = 20 meV (right). The
applied voltage is 10 mV. Other parameters are as in figure 4 (section 5.1).

the prediction of mirages out of the foci of elliptical corrals are somewhat hidden in the
scattering approaches. Instead, mirages observed in a circular corral [13] were inspired by
the extrema of the wavefunctions of the degenerate 37th and 38th conduction eigenstates of
a hard-wall circular corral, and were calculated with our many-body approach for a circular
corral with soft walls [51, 52].

Having in mind the most studied case of the mirage effect: a Co impurity placed at one
focus of an elliptical corral with e = 1/2 built on a Cu(111) surface [12], we have calculated
the differential conductance d I/dV (Rt , Ri , V ) as a function of the tip position Rt , for the
impurity position fixed at the left focus (Ri = (−0.5a, 0)) and voltage V = 10 mV. We used
equations (11), (14) and (32). We have taken p = q = 0, since they are important only near
the impurity (see footnote 3). Therefore the results depend on the impurity Green function
Gd(ω) calculated as in section 5.1, and, mainly, on the unperturbed surface Green function
G0

s (R1, R2, ω). To calculate the latter we used equation (32) with the corral wavefunctions
ϕc

j(R) calculated as in [87]. The wavefunctions of the states which lie nearer to the Fermi
energy are shown in figure 8. The wavefunctions can be classified by symmetry into the four
irreducible representations of the point group C2v, according to the parity under reflection
through the major (minor) axis σy (σx ). In particular each of the shown wavefunctions belongs
to a different representation. The state 42, which lies at the Fermi energy, is even under both
reflections, 40 is odd under both of them, 41 is even under σy and odd under σx , and 43 is odd
under σy and even under σx .

The results presented in figure 9 were obtained for Vb = 0, but quite similar results
emerge if Vs is decreased by a factor 1/

√
2 and Vb is increased so that the contributions to the

resonant level width of bulk and surface states have the same magnitude, and the width of the
impurity spectral density is kept. This is not surprising since the above-mentioned change of
parameters practically does not affect Gd(ω), and then, from equation (14), the only change
in �d I/dV (Rt ) for p = q = 0 comes from a factor V 2

s (see figure 3 of [51]). Instead, the
dependence on the impurity position Ri should be affected by the relative strength of Vb and
Vs (see the next section).

The differential conductance d I/dV (Rt ) for a constant width δ = 50 meV of the
conduction surface states is represented in figure 9, left. It is very similar to the observed
topograph [12]. However, the latter corresponds to the total current I and not to d I/dV . The
similarity is due to the fact that δ is larger than the energy corresponding to the applied voltage
eV = 10 meV, and d I/dV does not change too much on this energy scale. Comparing with
figure 8, one sees that as a first approximation, the observed pattern can be described as a sum
of the densities of the state 42 which lies at the Fermi energy εF , and the state 43 which is
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Figure 10. Contour plot of the
wavefunctions of an elliptical corral with
semimajor axis a = 7.13 nm and e = 1/2
with appreciable amplitude and the foci
and close to the Fermi energy.

∼eV above εF . The wavefunction of the state 42 shows some vertical ‘stripes’ which end in
‘arcs’ at the extreme left and right. These essential features rotated by 90◦ describe roughly
the wavefunction of the state 43. Therefore the structure with ‘arcs’ at the border and ‘stripes’
in the middle is to be expected in the sum of probability densities.

Translated into equations, this is consistent with the behaviour expected from the first
term of the first equation (14) and equation (32). However, this is not the whole story because
the above-mentioned term depends on the sum of squares of wavefunctions and is therefore
invariant under all symmetry operations of the ellipse, while the observed topograph (and our
calculated d I/dV ) does not have a defined parity under σx . The addition of the impurity
breaks the symmetry under σx and the effect of the impurity is contained completely in �Gh

(see equation (14)). The imaginary part of�Gh is directly proportional to�d I/dV , which is
d I/dV minus the corresponding quantity for the empty corral. From equations (14) and (32), it
is clear that physically the effect of this subtraction is to eliminate the contribution of all states
j which have a negligible hybridization with the impurity Vsϕ

c
j(Ri ). In particular, states odd

under σy like 40 and 43 have ϕc
j(Ri ) = 0 and do not participate in�d I/dV . In practice, states

like 41 which are even under σy but have a small amplitude at the foci do not affect the result
either. In figure 9, middle, we show the ‘cleaned’ result �d I/dV for the same parameters
of the complete result d I/dV shown at the left. Now the main features of the wavefunction
of the state 42 can be recognized directly, particularly if the width of the conduction levels is
reduced to δ = 20 meV (figure 9 right). Comparison with experiment [12] indicates that the
right value of δ is in between those shown: 20 meV < δ < 50 meV.

An analysis of the magnitude of the wavefunctions at the foci (which determine the
hybridization strength of the impurity with the different states) shows that the space dependence
of �d I/dV is dominated by four states. The wavefunctions of these states are shown in
figure 10. While all these states are even under σy (otherwise they would not hybridize with
the impurity), only 42 is even under σx . The rest are odd under σx . This produces a negative
interference between the contribution of the state 42 and the other three at the empty focus
which tends to destroy the mirage effect. In simple terms, one could say that the information
of the Kondo effect transmitted by the focus of the impurity by the four wavefunctions reaches
the other focus with positive sign for the states 42 and with negative sign for the states 32,
35 and 51 so that the amplitude is reduced. Formally, this can be seen in equations (14) and
(32). As δ decreases, the relative contribution of the state 42 which lies at the Fermi energy
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Figure 11. (a) Analytical function used to fit dI/dV for a Co atom on a clean Cu(111) surface [17].
(b) Density of the hσ state proportional to �dI/dV (see equation (11)) for the system of (a).
(c) Same as (b) for a Co atom at the focus of the elliptical corral of figure 10, at the Co position
(full curve) and at the empty focus (dashed curve). For comparison, the dotted curve is the result
for the clean surface with q = 0. The parameters are Vs = 0.64 eV, δ = 40 meV, U = 1 eV and
q = 0.03.

increases and the size of the mirage effect also increases. This suggests reducing δ, if one can
control this parameter experimentally, or trying to optimize the geometry in order to reduce the
negative interference effects [38]. However, as shown in the previous section, if δ is reduced
too much, the Kondo resonance and Fano antiresonance near the Fermi level are destroyed.

8. Voltage dependence of ∆dI/dV

The experimental study of the line shape of�dI/dV at the impurity site in different positions of
one corral or in different corrals and its comparison with theory should be useful for elucidating
the relative strength of the hybridization of the magnetic impurity with bulk and surface states.
A greater sensitivity to geometry points towards a greater relevance of surface states. Recently,
it has been argued that due to the exponential dependence of the Kondo temperature on the
density of states (see footnote 2), the observed line shape with approximately the same width
in different situations indicates that the hybridization with bulk states should be much more
important [45]. However, the calculations of [45] are rather generic and the specific features
of the corral states were not taken into account.

For the case of the Cu(111) surface, to the best of our knowledge the dependence of
�d I/dV on the bias voltage has been reported only in two cases: the clean surface [12, 17]
(see figure 4) and the elliptical corral described in the previous section, with a Co atom at
one of the foci [12]. In the latter case the line shape is more symmetric, but the widths
are approximately the same in the two cases. Both line shapes can be qualitatively described
including only with hybridization with surface states. In figure 11 we show our results obtained
within perturbation theory, using equations (14), with p = 0, and q = 0.03, to control the
asymmetry of the line. Since we used here constant Vs and surface density of states ρs (as
in section 3), and the nearly symmetric case Ed + U/2 ∼ εF , the line shape for the clean
surface is symmetric for q = 0 (dotted curve in figure 11(c)), and a value of q > 0 reproduces
the observed asymmetry (figure 11(a)). Instead, a constant Vs in the corral case leads to an
asymmetry opposite to that observed for the clean surface (like the full curve of figure 16),
while the line shape observed in the corral is symmetric. Then, in this case the effect of q > 0
is to correct the asymmetry. It is encouraging that the same set of reasonable parameters can
explain qualitatively both line shapes. The experimental�d I/dV has kinks around ±0.01 V
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Figure 12. �ρhσ (ω) ∼ �dI/dV (ω/e) (see equation (11)) for an ellipse with a = 6.46 nm and
e = 1/2, and two impurity positions: (a) Ri at one focus, (b) Ri = (±0.4a, 0). The full (dashed)
curve corresponds to the tip at Ri (−Ri ). The parameters are δ j = δF (ε j − εb)/(εF − εb) with
δF = 40 meV, Vs = 0.48 eV, δb = 32 meV, Eeff

d = 7 meV, U = 1 eV, p = 0 and q = 0.02.

which are probably due to peculiarities of the non-interacting band structure and are beyond of
the scope of our theory [12, 17]. As shown at the bottom of figure 6, the width of�d I/dV has
some variation with the width of the conduction states δ. Here we have chosen δ = 40 meV,
which as discussed in the previous section leads to a space dependence of d I/dV in agreement
with experiment.

The rather similar linewidths in the above-mentioned cases seem accidental and other
situations are more suitable for analysing the relative role of surface and bulk states in the
formation of the Kondo resonance. In figure 12 we show the line shape expected in a smaller
elliptical corral, with the semimajor axis reduced to a = 6.46 nm keeping the same eccentricity
e = 1/2, so that the state 35 (see figure 10) falls at the Fermi energy. This state has extrema
at positions Re = (±0.4a, 0), and the average separation of the levels is larger than in the
previous case. The surface spectral density near the Fermi level is larger at Re than at the
foci (±0.5a, 0). Even including the same hybridization strength of the impurity with surface
and bulk states, the depth and width of �d I/dV are substantially larger if the impurity is
placed at Re rather than at the foci. Note also that the intensity with the tip at the opposite
point Rt = −Ri is considerably larger in this case. This is due to the fact that the negative
interference between states 42 and 35 explained in the previous case is substantially reduced.
A stronger mirage in this geometry has been predicted before [38].

In the rest of this section, we show results for the line shape for the tip placed on the
impurity and several positions of the impurity inside a circular corral of radius r0 = 6.35 nm,
in such a way that the degenerate states 37 and 38 lie at the Fermi level. Experiments in
this corral have been done to illustrate the simultaneous presence of two mirages [13]. We
use the SBMFA, because it gives the correct exponential dependence of TK with the coupling
constant (see footnote 2). We also use the exact equations (29)–(31) for the surface Green
function instead of the approximate equation (32). The SBMFA is described in section 5.2
and the parameters are those taken there to fit the line shape for the clean surface.

In the absence of the impurity, the density of surface conduction electrons at the Fermi
energy has a pronounced relative maximum near r = |Ri | = 0.15r0 [51]. As shown in
figure 13(a), the depth and width of �d I/dV vary considerably as the impurity and STM
tip are moved together from the centre of the corral to this maximum. At the centre, only
the corral surface states with angular momentum projection m = 0 can hybridize with the
impurity. Since the corresponding resonances are far from the Fermi level (see figure 14), the
Fano antiresonance for r = 0 is more than 80% due to bulk states. In fact, doing the same
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sσ (r, ω) =
−λ2 Im[G0

s (r, θ, r, θ, ω)/π ] (see equa-
tions (29)–(31)) as a function of energy ω for
different values of r/r0.

calculation with p = 0 (assuming no hopping between tip and bulk states; see equations (7)
and (14)), |�ρhσ | < 0.01 eV−1. Therefore for r = 0 the bulk states play a major role not
only in the formation of the Kondo state but also in the variation of the STM current�d I/dV
which is mainly due to the current between tip and bulk states. At remote positions this Fano
antiresonance of bulk states will not be observed (see footnote 3). In general, the contribution
to the dip in �d I/dV due to bulk states (and interference with surface states), captured at the
impurity by the hybridization of tip and bulk states, will be absent at a mirage point and is a
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(c) δF = 20 meV, δb = δs .

natural limitation of the intensity at the mirage point (see the next section). For r/r0 = 0.15,
the intensity of �d I/dV decreases to ∼40% if the tip–bulk hopping is disconnected.

Compared with the rapid variation for r/r0 < 0.2, the width and magnitude of �d I/dV
oscillate weakly with position for 0.2 < r/r0 < 0.9, with larger intensity and width for
r/r0 = 0.4, 0.65 and 0.85 (see figure 13). However, there is a dramatic increase for r/r0 > 0.9,
with a maximum near 0.96, as shown in figure 13(e). Although unfortunately at this short
distance from the boundary our theory ceases to be reliable (because of our simple assumption
of a continuous boundary potential), it is instructive to relate this result to the variation of the
density of surface states ρ0

sσ (r, ω) at the Fermi energy εF = 0 with position. As shown in
figure 14, there is a moderate increase in ρ0

sσ (r, ω) near ω = 0 as r/r0 increases from 0.15 to
0.95. This is mainly due to the contribution of states with high angular momentum projection
which render ρ0

sσ rather flat in energy. Instead, for r/r0 = 0, the resonances with m = 0 are
selected and they lead to the displayed oscillatory behaviour.

The parameters of figure 13 correspond to an equal participation of bulk and surface states
in the resonant level δb = δs . Considering the case δb = 3δs , as expected, the variation of
the width of the resonance with the position of the impurity is less pronounced, but otherwise
the same qualitative features as before are obtained. Except for the peculiar behaviour near
the boundary of the corral, the greater sensitivity to the position is for 0 < r/r0 < 0.15 as
before. Comparison between the two cases is presented in figure 15. In figures 15(a) and (b)
we have used an intensity of the boundary potential Vconf = 7, which leads to a broadening
δF = 40 meV of the surface conduction states at the Fermi level (see section 6.1). This value
leads to a space dependence in agreement with experiment (see section 7). In figure 15(c) we
show how the space variation is affected if the confining potential is increased to Vconf = 15,
leading to δF = 20 meV. The oscillations in the surface density of states and therefore the
variations of the width of the resonance with position become much more pronounced. There
is a tendency towards a change in the line shape, similar to that of figure 6 for δF = 10 meV,
which can allow one to identify or rule out this regime experimentally. For other positions of
the impurity (not shown), the tendency is similar to that of figure 13, but the particular structure
for r/r0 = 0.95 has almost disappeared.

9. Lower bound for impurity–surface hybridization

Within our local picture for the hybridization of the impurity and tip with conduction states,
a simple estimate of a lower bound for Vs/Vb can be obtained from the mirage experiment in
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2 eV,
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the elliptical quantum corral [12]. The ratio of the intensity of �d I/dV at the mirage point
Im (for the tip position Rt = −Ri ) to that at the impurity Ii (for Rt = Ri ) was reported to be
Im/Ii

∼= 1/8. As in section 3, let us approximate G0
b(Ri , Ri , ω) � −iπρb. Also, for enough

broadening of the surface conduction states δ � 40 meV, one has G0
s (Ri , Ri , ω) � −iπρs [38].

Neglecting the tip–impurity hopping (q = 0), using equations (11) and (14) one has

Ii = −�d I/dV (Rt ) � C

(
Vs

Vb
+ p

ρb

ρs

)2

ρd(ω) = C

(
Vs

Vb
+ 1

)2

ρd(ω), (33)

where C = πV 2
b ρ

2
s is a constant and in the last equality we assumed that pρb = ρs , so that in the

absence of impurity, the tip detects bulk and surface states with the same intensity, as reported
experimentally [17, 57, 58]. Now, at the mirage point one can neglect G0

b(Ri ,−Ri , ω) (see
footnote 3). Assuming instead perfect transmission from the surface states (as if only the
state 42 were relevant), one has G0

s (Ri ,−Ri , ω) = G0
s (Ri , Ri , ω). Since the amplitude at the

mirage point is less than that for perfect transmission, one has, from equations (11) and (14),

Im = −�d I/dV (−Rt ) < C

(
Vs

Vb

)2

ρd(ω), (34)

and then, from equations (33) and (34),

Vs

Vb
>

√
Im

Ii

(
1 +

Vs

Vb

)
>

√
Im

Ii
+

Im

Ii
. (35)

Solving a quadratic equation, a more precise bound for Im/Ii = 1/8 gives Vs/Vb > 0.547.
Using ρb � 3ρs , this implies δs > δb/10, with δc = πρcV 2

c . A smaller tip–bulk hopping p
leads to a larger lower bound for δs .

10. Interaction between Kondo impurities in a quantum corral

Experiments with two impurities inside an elliptical quantum corral have been done [13],
but the results have not been published yet. These experiments should be particularly useful
as a test of the relative strength of the hybridization of the impurity with bulk and surface
states, since one expects, at distances larger than ∼0.5 nm, the interaction between two Kondo
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impurities to be dominated by surface states. In this section we extend previous calculations
of the line shape of �d I/dV when there is one impurity at each focus of an elliptical corral,
using the technique of exact diagonalization plus embedding, described in section 5.3 [47].
Other calculations of the interaction between magnetic impurities in a corral have been made
using the theory of perturbation in the Kondo coupling [88]. However, this technique does not
work in the case that we are interested in, of antiferromagnetic Kondo coupling JK > 0 (see
footnote 2).

As explained in section 5.3, the Hamiltonian is written as H = H0 + H ′ + Hr . In our
case the Hilbert space of H0 contains one or two impurities and the most important surface
conduction states (those represented in figure 10) and two additional ones (24 and 62) although
they do not affect the results. Hr describes a set of independent non-interacting bulk states
which hybridize independently with the impurities and the surface conduction states. H0 has
a similar form to equation (1) but only contains hard-wall surface conduction states and can
contain more than one impurity:

H0 =
∑

jσ

ε j s
†
jσ s jσ + Ed

∑

iσ

d†
iσdiσ + U

∑

i

d†
i↑di↑d†

i↓di↓ +
∑

i jσ

λVs[ϕ j(Ri )d
†
iσ s jσ + H.c.],

(36)

while the effect of bulk states and the broadening of the surface states (necessary to obtain a
qualitatively reasonable line shape as shown in section 6) is contained in H ′ which reads

H ′ ∼= t
∑

jσ

(s†
jσb jσ + H.c.) + Vb

∑

iσ

(d†
iσbiσ + H.c.). (37)

For the bulk states blσ we take a constant unperturbed density of ρb = 0.05 states eV−1 /spin
(of the order of the density of bulk s and p states at εF [86]), but a change in ρb can be absorbed
in a change in t and Vb. The value of t controls the width of the conduction states and, therefore,
the intensity at the mirage point, as explained in sections 6 and 7.

In figure 16, we represent the change in differential conductance for p = q = 0 for the
case in which there is one impurity at each focus, comparing two situations. In the first one
Vb = 0 and Vs = 1.12 eV is taken to reproduce approximately the experimental width. In
the second one Vs is reduced by a factor 1/

√
2 and Vb increased to 1.2 eV in order that the

same width and practically the same line shape is obtained. In the former case, the effect of
the interaction between impurities is stronger and the line is wider and with some structure
due to a partial splitting of the Kondo resonance. In the second case, the result is very similar
to the sum of the spectra at the two foci when only one impurity is present. This is the result
expected for weak interactions.

11. Summary and discussion

Using a simple impurity Anderson model in which the particular structure of the surface states
inside a corral is taken into account appropriately, the basic physics of the mirage experiments
in quantum corrals [12, 13] can be understood. The resulting space and voltage dependences
of the differential conductance d I/dV are in good agreement with experiment. The voltage
dependence of d I/dV observed for one Co atom on a clean Cu(111) surface and for a Co atom
at the focus of an elliptical corral built on that surface can both be explained with the same set
of parameters (see figure 11).

While the space dependence of d I/dV is mainly determined by non-interacting conduction
electron Green functions, the calculation of the dependence of d I/dV on the bias voltage is a
non-trivial many-body problem in which the particular structure of the conduction electrons
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for surface states introduces additional complications. Single-particle scattering theories
were successful in explaining the space dependence of d I/dV [31, 36, 37], but the voltage
dependence is actually used to adjust a phenomenological energy dependent phase shift.
Therefore the differences in the line shape as a function of the applied voltage in different
structures (like the above-mentioned for an impurity on a clean surface or inside the corral)
cannot by accounted for. In contrast, the many-body treatment is very difficult to implement
for open structures, while one-body scattering theory assuming simple interactions allows one
not only to calculate but also to optimize open structure to obtain multiple mirages or other
desired effects [89]. On the other hand, our approach leads to very good agreement with the
space dependence of d I/dV (see figure 9) except perhaps for the finest details which we did
not attempt to fit. In addition, it allows us to understand the basic observed features, including
the mirage effects and its intensity, in terms of the interference of wavefunctions in the corral
(see section 7).

Experiments in which the change in differential conductance after addition of one impurity
in a quantum corral �d I/dV is measured should be able to discern the relative importance
of surface and bulk states in the formation of the Kondo singlet. Measurements in circular
corrals, easier to handle theoretically, would be useful. In section 8 we presented some results
for this case. In addition, the change of�d I/dV when more than one impurity is present in the
corral is very sensitive to the surface–impurity hybridization. The observation of a quantum
mirage establishes a lower bound for this hybridization which we have estimated.

The calculations presented here are for T = 0. Within perturbation theory, the results can
be extended easily to T �= 0. Some results were presented in [51]. Important changes occur
on the scale of the Kondo temperature, but the behaviour is similar to that already known for
the simple case explained in section 3.

An improvement of the many-body theory requires a better knowledge of the hybridization
of the impurity with surface and bulk states and their wavevector dependence (which we have
neglected). The wavevector dependence is expected from a jellium model [54]. In particular
for the states near the Fermi energy εF and wavefunctions decaying as exp(−κz) out of the
surface, one expects k2

‖ −κ2 constant and therefore a smaller wavevector parallel to the surface,
k‖, implies a weaker decay rate, κ , in the perpendicular z direction, and therefore a larger
hybridization with impurity and tip. For surface states near εF , k‖ is small and one would
expect a weaker decay for surface than for bulk states. This suggests a stronger relative
hybridization of bulk states with the impurity in comparison with the tip, because the former
is closer to the surface. This would be consistent with the fact that the hybridizations of the
tip with surface and bulk states are of the same order [17, 57, 58], and the proposal that bulk
states dominate the hybridization with the impurity [17, 18, 45, 53]. However, more detailed
calculations of the matrix elements found oscillations of the matrix elements with z, and a
stronger relevance of surface states in the formation of the Kondo state [55] and in the distance
dependence of the observed dI/dV for magnetic impurities on clean (111) surfaces [55, 56].

We have shown that the width of the surface conduction electrons δ plays a crucial role in
the many-body theory (see section 6). We have calculated this width for a circular confinement
potential and found that it increases linearly with energy [51]. However, we assumed that for
a clean surface the surface states are well defined for all wavevectors and this is not the
case for energies above the Fermi energy [30]. Since localization involves a participation
of all wavevectors, there is a contribution to the width brought about by the states of larger
wavevector which we have neglected. However, since most of the physics depends on the
value of δ at the Fermi energy and we took it as a parameter, our conclusions are not affected.

Correlation functions of impurities inside a quantum corral have been studied
previously [47, 48, 51, 88, 89]. For perfect confinement a strong enhancement should occur.
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However, for realistic broadening of the surface conduction states, and distances of the order
of several nanometres involved in the mirage experiments, we expect the single-ion physics to
dominate the RKKY interactions, and no significant magnetic correlations to be present [51].
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[67] Costi T A, Hewson A C and Zlatić V 1994 J. Phys.: Condens. Matter 6 2519
[68] Levy-Yeyati A, Martı́n-Rodero A and Flores F 1993 Phys. Rev. Lett. 71 2991 and references therein
[69] Schiller A and Hershfield S 2000 Phys. Rev. B 61 9036
[70] Mahan G D 1981 Many Particle Physics (New York: Plenum)
[71] Wagner J, Hanke W and Scalapino D J 1991 Phys. Rev. B 43 10517
[72] Sorensen E S and Affleck I 1996 Phys. Rev. B 53 9153
[73] Barzykin V and Affleck I 1998 Phys. Rev. B 57 432
[74] Coleman P 2002 Preprint cond-mat/0206003
[75] Affleck I and Simon P 2001 Phys. Rev. Lett. 86 2854
[76] Aligia A A 2002 Phys. Rev. B 66 165303
[77] Shimada Y, Kasai H, Nakanishi H, Dino W A, Okiji A and Hasegawa Y 2003 J. Appl. Phys. 94 334
[78] Kajueter H and Kotliar G 1996 Phys. Rev. Lett. 77 131
[79] Silver R N, Gubernatis J E, Sivia D S and Jarrell M 1990 Phys. Rev. Lett. 65 496
[80] Weissmann M and Llois A M 2001 Phys. Rev. B 63 113402
[81] Langreth D C 1966 Phys. Rev. 150 516
[82] Newns D M and Read N 1987 Adv. Phys. 36 799
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